Targeting Treatment to the Patients: The 2022 Antimicrobial Playlist

Dr. Rita Dhami, BScPhm, PharmD.

Pharmacist, ID/ASP, London Health Science Centre

Clinical Assistant Adjunct Professor, University of Waterloo

Join PollEverywhere

BROWSER

• www.pollev.com/ritadhami078

PHONE

• Text ritadhami078 to 37607

Objectives

- Describe today's infectious disease patient
- Describe landscape of Canadian antimicrobial use today
 - "CLASSICS"
- Describe the newer antimicrobial agent and unique characteristics
 - "UP & COMING"
- Identify potential roles of these new agents in the management of your patients with infectious diseases
- Discuss strategies for treating infectious disease in challenging patients

Speaker Disclosure

- Faculty: Dr. Rita Dhami, PharmD
 Pharmacist, Infectious Diseases, LHSC
 Adjunct Clinical Assistant Professor, University of Waterloo
- Relationships with financial sponsors:
 - Grants/Research Support: N/A
 - Speakers Bureau/Honoraria: Pfizer, Paladin Labs
 - Consulting Fees: N/A
 - Patents: N/A
 - Other: N/A

Disclosure

- This event is sponsored by Paladin Labs Inc.
- The speaker has full editorial control over the presentation and will present off-label data.
- Paladin Labs does not support claims that are not consistent with the Health Canada-approved product monograph (off-label).

Infectious diseases in 2022...

Reasons for hospital admissions now

All nonmaternal, nonneonatal stays	:	52.1	16.7	23.6	4.6 2.8
Top 20 principal diagnoses		57.7	14.9	20.9	3.8 2.6
Septicemia		61.3	14.8	17.8	4.0 2.0
Heart failure		73.5		10.5 11	.2 3.01.8
Osteoarthritis		57.5	4.4	34.5	0.5 3.0
Pneumonia (except that caused by tuberculosis)		63.1	14.5	17.3	3.0 1.9
Diabetes mellitus with complication	43.	2	24.9	21.8	7.5 2.4
Acute myocardial infarction		57.5	9.6	25.2	4.8 2.8
Cardiac dysrhythmias		68.2	6.7	20.6	2.42.0
COPD and bronchiectasis		69.2		14.4 <mark>11.</mark> /	6 2.7 2 .0
Acute and unspecified renal failure		68.6	1	1.0 15.0	3.4 1.9
Cerebral infarction		65.4	9.2	19.0	4.1 2.1
Skin and subcutaneous tissue infections	41.9	9	24.2	22.9	7.9 2.9
Depressive disorders	18.0	34.9	34.0	7	7.7 5.2
Spondylopathies/spondyloarthropathy	4	9.2	8.4 3	4.3	1.4 6.5
Urinary tract infections		67.8	1	2.8 14.6	3.21.5
Respiratory failure; insufficiency; arrest		61.0	18.1	15.4	3.0 2.5
Schizophrenia spectrum, other psychotic disorders	36.3		41.9	12.6	5.6 3.3
Coronary atherosclerosis, other heart disease		58.8	9.5	25.5	3.1 3.0
Biliary tract disease	40.2	1	18.4 3	1.6	7.1 2.6
Fluid and electrolyte disorders		61.2	17.8	15.9	3.1 1.9
Complication of care, injury*	46	6.9	18.1	29.1	2.7 3.1
	0 20	40	60	80	100
	Percentage of Inpatient Stays				

Medicare Medicaid Private insurance Self-pay/No charge† Other

Interactive Map: In-Hospital Sepsis (per 1,000), undefined

Hover over data points for additional information or select data points to access health region, hospital and longterm care organization results, when available. Contextual information is displayed below the map, based on your selection. More information can be found on the <u>Resources Page</u> of the Indicator Library.

undefined results are for 2020-2021 except for Quebec; these results are for 2019-2020.

Above average performance 🛛 🗲 Same as

Same as average performance

Information (CIHI)

Below average perform Trend Over Time: In-Hospital Sepsis (per 1,000)

Canada

ADD a province, territory, health region, long-term care organization or hospital using the search boxes below. You can also ADD a city to find results for the corresponding health region. At least 3 years of data must be available for trend results to appear on the graph.

The graph will refresh when a filter is selected. The filtered data will be reflected in the downloadable Excel file, available by selecting Data Export following the graph.

Methodology (PDF)

Alberta

Data Export

Why are infections so problematic

Drug Related

- Poor penetration
- Insufficient dose or route
- PK/PD not optimized

Pathogen Related

- Wrong pathogen
- Multidrug resistant organism
- Inoculum effect

Patient Related

- Comorbidities
- Adherence
- Inappropriate administrations of route

Nicolau DP. Current challenges in the management of the infected patient. Curr Opin Infect Dis 2011 Feb;24 Suppl 1:S1-10. doi: 10.1097/01.qco.0000393483.10270.ff. PMID: 21200179. Schierholz JM, Beuth J, Pulverer G. "Difficult to treat infections" pharmacokinetic and pharmacodynamic factors--a review. Acta Microbiol Immunol Hung. 2000;47(1):1-8. PMID: 10735184.

Canadian Landscape of Antimicrobial Use

Canadian Nosocomial Infection Surveillance Program: Antimicrobial Use

Public Health Agence de la santé Agency of Canada Publique du Canada Canada

Quantitative Antimicrobial Usage Surveillance Amongst Adult and Paediatric Inpatients at CNISP Hospital Sites across Canada

CNISP AMU Working Group 2022

John Conly (adult), Michelle Science (paediatrics), Daniel Thirion (pharmacy) CNISP epidemiologists: Kelly Choi, Joelle Cayen, Linda Pelude, Wallis Rudnick CNISP MPH student: Janine Xu

Preliminary data - please do not share

PROTECTING AND EMPOWERING CANADIANS TO IMPROVE THEIR HEALTH

Most frequent antimicrobials in 2021 (n=103 hospitals)

Rate of AMU (DDD/1000 patient days)

Antibiotics with the greatest absolute increases

2009–2014 to 2016–2021 (all sites); SDNS = Site not specify administration route

Antibiotics with the greatest absolute decreases

2009–2014 to 2016–2021 (all sites) ; SDNS = 'Site did not specify route of administration'

THE GREATEST ANTIMICROBIALS ON EARTH

"CLASSICS"

"UP & COMING"

Strategy for dealing with the 'challenging' patient infections

Amoxicillin-clavulanate

• Dose:

- 5:1 1000 mg/200 mg every 6-8 hours
- 10:1 2000 mg/200 mg every 8-12 hours
- Spectrum:
 - Staphylococcus spp, Streptococcus spp, Enterococcal spp
 - H.influenzae, H.parainfluenzae, M.catarrhalis* P.multocida, P.mirabilis
 - Clostridium spp. Peptostreptococcus spp.
- Indications.... Endless!

Fosfomycin IV (Ivozfo[®])

• Spectrum:

- Gram positive bacteria such as S. *aureus* (incl. MRSA) and *Enterococcal spp.* (incl. VRE)
- Gram negative bacteria *N.gonorrhoeae, ESBL* & Carbapenemase Enterobactericiae
- Anaerobic bacteria such as *Peptococcus* species

•	Dose
---	------

Table 1: General dosage guidelines for adults by indication					
Indication	Daily dose				
Osteomyelitis	12-24 g* in 2-3 divided doses				
Complicated urinary tract infection	12–16 g in 2–3 divided doses				
Nosocomial lower respiratory tract infection	12-24 g* in 2-3 divided doses				
Bacterial meningitis	16-24 g* in 3-4 divided doses				

*The high-dose regimen (> 16 g/day in 3 divided doses) should be used in severe infections expected or known to be caused by less susceptible bacteria (see **MICROBIOLOGY**).

Individual doses must not exceed 8 g.

Watch sodium load

CLEAR* Registry

CLEAR (n=58): IV Fosfomycin Infections Treated

CLEAR (n=58): IV Fosfomycin Pathogens Treated

Zhanel et al. Canadian Leadership on Real-Life Antimicrobial usage Sep 2022

Ceftolozane-tazobactam (Zerbaxa[®])

- Dose: 1.5-3g IV Q8H
- Spectrum: E.cloacae, E.coli, K.oxytoca, K.pneumoniae, P.mirabilis, P.aeruginosa, B.fragilis, S.anginosus, S.salivarius.
- Indicated for cIAI, cUTI, Nosocomial Pneumonia, CAP

CLEAR Registry

Zhanel et al. Canadian Leadership on Real-Life Antimicrobial usage Sep 2022

Ceftaroline (Teflaro[®])

- Available through Health Canada SAP
- Covers S.pneumoniae, S.aureus (including MRSA), H.influenzae, E.coli, K.pneumonia
- Indication for CAP; Evidence for MRSA salvage therapy
- Dose: 600mg IV q12h
 - Doses q8h for IE
 - Renal dose adjustment required

Ceftobiprole (Zevtera[®])

- Spectrum: S.aureus (including MRSA), S.pneumoniae, E.coli K. pneumoniae, H.influenzae
- Role: Indication is CAP/HAP, Previously on market for SSTI
- Dose: 500mg IV q8h

CLEAR Registry

Zhanel et al. Canadian Leadership on Real-Life Antimicrobial usage Sep 2022

Dalbavancin

- Spectrum: Staphylococcus spp, Streptococcus pyogenes, Enterococcus spp (vancomycin-susceptible isolates only)
- Role: SSTI
- Dosing regimens: 1500mg IV once 1000mg x 1, 500mg 1 week later

CLEAR Registry

Novel Beta lactamase inhibitor combinations

- Not in Canada
 - Ceftazidime-avibactam (Avycaz[®])
 - Meropenem-vaborbactam (Vabomere[®])
 - Tebipenem (Orapenem®)
 - Imipenem-cilistatin-relebactam* (Recarbrio®)

Transitions to Outpatient

Strategy for dealing with the 'challenging' patient discharges

Transition to Outpatient IV to PO

- Clinical data supports efficacy for given indication, including adequate penetration to the site of infection
- Excellent bioavailability,
- No significant food-drug or drug-drug absorption issues
- Few adverse events when taken orally
- Ensure not barriers to administration (easy to swallow pills, taste of oral solution, Infrequent dosing schedule, Cost, not on back-order)

Oral vs. IV Abx for Bacteremia

Author	Yr	Ν	Regimen (Oral vs. IV)	Success	
Amodio-Groton	'96	50	Ciprofloxacin oral vs. IV—GNB	83% (20/24) v 77% (20/26)	
San Pedro	<i>'</i> 02	51	Linezolid vs. ceph—S. pneumo	93% (27/29) v 68% (15/22)	
Deville	′03	36	Linezolid vs. vanco—GPC (peds)	80% (20/25) v 64% (7/11)	
Jantausch	′03	103	Linezolid vs. vanco—GPC (peds)	72% (54/75) v 64% (18/28)	
Kaplan	′03	80	Linezolid vs. vanco—GPC (peds)	82% (47/57) v 74% (17/23)	
Schrenzel	′04	67	FQ + rif vs. βL/vanco— <i>Staph</i>	87% (34/39) v 89% (25/28)	
Wilcox	′04	56	Linezolid vs. teicoplanin—GPC	89% (23/26) v 57% (17/30)	
Wilcox	′09	166	Linezolid vs. vancomycin—GPC	75% (70/93) v 81% (59/73)	5/15)
Monmaturopaj*	′12	17	Cefditoren vs. ceftriaxone—GNB	100% (6/6) v 91% (10/11)	25)
Park	'1 4	59	Ciprofloxacin vs. std IV—GNB	93% (27/29) v 93% (28/30)	/201)
Total (N=10 RCTs) 685 81% (328/403) V 77% (216/282)					(170)

Refs at https://www.bradspellberg.com/oral-antibiotics

 $\left(\tau I \right) \left(\sigma \tau \right) \left(\sigma \tau \right) \left(\sigma \tau \right)$

switch to oral ceftditoren at day 3.

18% (317/404) V 68% (281/411)

(241)

Transition to Outpatient Antimicrobial Therapy (OPAT)

• Models include:

- Traditional home infusion models
- Home self-administration
- OPAT infusion clinics
- Alleviate patient beds in acute care
- Empowers patients & caregiver engagement patient in care

Considerations for Outpatient Parenteral Antimicrobial Therapy

Criteria for Receiving Home IV therapy

For any Parenteral drug

- Informed consent/Willingness of both the patient and family/caregivers
- Availability of optimal communication by phone;
- Residence within the region of the healthcare system range
- Ideal hygienic and sociofamiliar conditions;
- Clinical and hemodynamic stability of the patient.

For Antimicrobial Therapy

- Requirement for intravenous administration;
- Public formulary coverage
- Administration of the first dose in a hospital setting

Challenges with OPAT

- Low funding for OPAT implementation from healthcare institutions
 - Resource intensive for nursing and pharmacy
- Difficulties in tracking OPAT patients through the medical record system.
- Gaps in communication with other OPAT service providers
- Turnaround time in obtaining laboratory results

OPAT Monitoring in London

- Virtual Vancomycin Monitoring Clinic
 - Nurse-led clinic 7 days a week
 - In-patient Hospital ID Pharmacist
 - completes assessment of discharge dosing, teaching for the patient, documents progress / transfer note, sends referral form

Treat beyond the infection...

Strategy for dealing with the 'challenging' patients

Beyond the Infection: The London Experience

Quarterly percentage of patients with evidence of injection drug use admitted with infective endocarditis.

Weir M. Slater J. Jandoc R. Koivu S. Garg A. Silverman M. CMAJ Jan 2019, 191 (4) E93-E99; **DOI:** 10.1503/cmaj.180694

Quarterly prescriptions for traditional controlled-release oxycodone and hydromorphone as percentages of total opioid prescriptions.

Matthew A. Weir et al. CMAJ 2019;191:E93-E99

©2019 by Canadian Medical Association

Quarterly prescriptions for hydromorphone as a percentage of total opioid prescriptions and the risk of infective endocarditis related to injection drug use.

Matthew A. Weir et al. CMAJ 2019;191:E93-E99

CMAJ·JAMC

©2019 by Canadian Medical Association

The key to addressing challenging patients

Substance use Disorder

Diabetes

Smoking

Mental health

Hygiene

Malnutrition

Obesity

Skin integrity

Patient characteristics Optimal dosing strategies Local antibiograms Early appropriate empiric therapy

TREAT BEYOND THE INFECTION

SUMMARY

SUMMARY

- Today's infectious diseases are influenced by patient, pathogen and drug related factors
- Canadian antimicrobial use monitoring data is skewed by "CLASSICS"
- "UP & COMING" antimicrobial agents offer unique characteristics and potential roles
- Multifaceted solutions are needed for treating infectious disease in challenging patients