### HIT Me With Your Best Shot A Review of Heparin-Induced Thrombocytopenia

Presented by: Melissa Hawkins & Natalie LeBlanc Pharmacy Residents Horizon Health Network – The Moncton Hospital November 6<sup>th</sup>, 2010

### Disclaimer

Conflicts of interest: None!

Only sources of funding are the Canadian Student Loan office and... our parents!

## Learning Objectives

- Review the epidemiology, risk factors, pathophysiology, signs and symptoms and diagnosis of heparin-induced thrombocytopenia (HIT).
- 2. Review the evidence for the pharmacologic options used in the treatment of HIT.
- 3. Identify the advantages and disadvantages of each pharmacologic treatment option.
- 4. Discuss the management of a patient with HIT.

### Case Scenario - PB



29 y/o female presented to ED after a skiing accident, which resulted in a fractured left knee

### Case Scenario (cont) - PB

Required knee surgery – successful/uneventful

Discharged from hospital three days later

DVT prophylaxis

- Enoxaparin 30mg q12h x 7 days

Four days after d/c – came back to hospital with swelling and pain in the upper left leg

## Case Scenario (cont) - PB

- Presented to hospital @ 2100 on a Friday night... ultrasound gone for the day
- Dose of enoxaparin given60 mg
- Patient told to return to hospital the next morning for an ultrasound
- Next morning ultrasound positive for VTE
- Blood-work drawn

### Definitions

Non-Immune Heparin-Associated Thrombocytopenia - Previously Type I HIT

Immune Heparin-Induced Thrombocytopenia - Previously Type II HIT

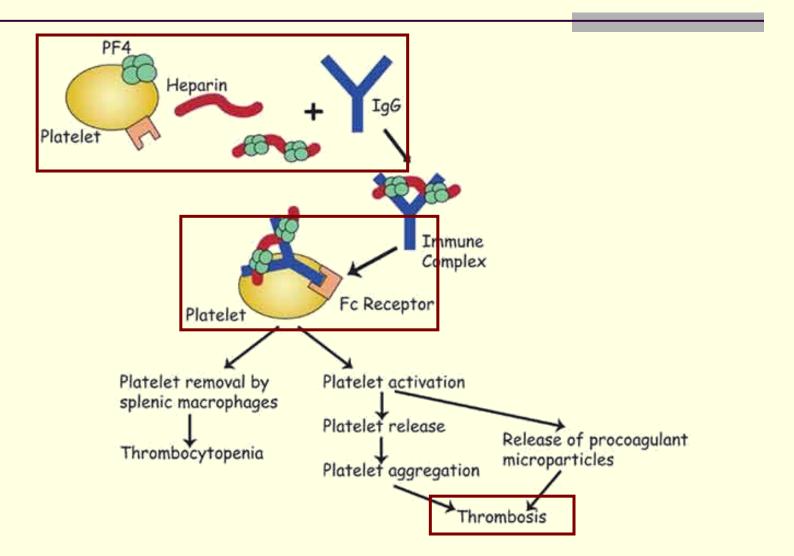
|                                         | Non-Immune HIT | Immune HIT                    |  |
|-----------------------------------------|----------------|-------------------------------|--|
| Frequency                               | 10-30%         | 1-3%                          |  |
| Time from initiation of heparin therapy | <5 days        | >5 days                       |  |
| Reduction in plt count                  | Mild           | Moderate-Severe               |  |
| HIT antibodies                          | Absent         | Present                       |  |
| Risk of thrombosis                      | Low            | High                          |  |
| Management                              | Observe        | D/C heparin                   |  |
|                                         |                | Use alternative anticoagulant |  |

Shantsila E et al, Chest 2009.

## Epidemiology

- Up to 8% of patients receiving heparin will develop the antibody associated with HIT
- ~ 1-3% of these patients will progress to develop HIT
- 1/3 of patients who develop HIT will suffer from venous and/or arterial thrombosis




- Longer duration of therapy
- UFH vs. LMWH
- Cardiovascular vs. Orthopedic surgery
- Post-surgical vs. Medical patients
- Female vs. Male patients

## Pathophysiology

The pathogenesis of HIT can be described in 3 stages:

- 1. Immune reaction with generation of HIT antibodies
- Platelet activation and <sup>↑</sup> thrombin generation
- 3. Extension of existing thrombosis or the development of new thrombosis

## Pathophysiology



#### http://home.ccr.cancer.gov

Thrombocytopenia

- Suspect HIT if:
  - Platelets < 150X10<sup>9</sup> cells/L
  - Fall in platelets > 50%
  - Typically 5-14 days following heparin administration
- ACCP Guidelines recommend platelet monitoring in patients at high or intermediate risk of HIT

Thrombocytopenia (cont'd)

- Platelet Monitoring
  - Received heparin within past 100 days baseline and at 24 hours
  - High risk every other day
  - Intermediate risk q 2-3 days from day 4-14
  - As clinically indicated
- Very severe thrombocytopenia (platelets < 15-20X10<sup>9</sup> cells/L) not usually HIT
- Variations in thrombocytopenia presentation

#### Thrombosis

- Main contributor to the severity of HIT
- Unpredictable
- Can develop at any vascular location
  - Venous more commonly in post-op patients
  - Arterial more commonly in cardiac patients
- Development or extension of a thrombosis in patients receiving prophylactic therapy with UFH or LMWH should always raise a suspicion of HIT

Other manifestations

Skin lesions



- Acute systemic reactions
- Disseminated intravascular coagulation
- Venous limb gangrene in HIT patients treated with anticoagulants

## Case Scenario (cont) - PB

PB returns to hospital the next morning

Ultrasound performedPositive for VTE

Blood work drawn

CBC

- Chem
- Coagulation Panel

## Diagnosis

- Clinical criteria
  - Thrombocytopenia
  - Thrombosis
  - Laboratory diagnosis
    - <sup>14</sup>C serotonin release assay (SRA)
    - enzyme-linked immunosorbent assay (ELISA)
    - Heparin-induced platelet aggregation (HIPA)
- Pre-Test Probability the 4 T's

## Pre-Test Probability of HIT

| Category                         | 2 Points                                                                                     | 1 Point                                                                                                                         | 0 Points                                           |
|----------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Thrombocytopenia                 | >50% fall OR<br>Nadir of 20-100X10 <sup>9</sup><br>cells/L                                   | 30-50% fall OR<br>Nadir of 10-19X10 <sup>9</sup><br>cells/L                                                                     | <30% fall OR<br>Nadir < 10X10 <sup>9</sup> cells/L |
| Timing of platelet<br>count fall | Onset Day 5-10 OR<br>≤1 day if heparin<br>exposure within past 30<br>days                    | Onset beyond Day 10<br>(or unclear, but<br>consistent with HIT) OR<br>≤1 day if heparin<br>exposure within past 30-<br>100 days | Fall at < Day 4 with no recent heparin exposure    |
| Thrombosis or<br>other sequelae  | Confirmed thrombosis,<br>skin necrosis, or acute<br>systemic reaction after<br>heparin bolus | Progressive, recurrent,<br>or silent thrombosis;<br>non-necrotizing<br>(erythematous) skin<br>lesions                           | None                                               |
| Other cause for thrombocytopenia | None evident                                                                                 | Possible                                                                                                                        | Definite                                           |

High probability = 6-8 points Intermediate probability = 4-5 points Low probability = 0-3 points

Coutre S, Up-To-Date 2010; Shantsila E et al., Chest 2009

## Case Scenario (cont) - PB

#### CBC:

- Platelets = 98X10<sup>9</sup> cells/L
  - Baseline = 294X10<sup>9</sup> cells/L
- All other parameters WNL
- Chem: WNL
- Coag
  - PT 13.4s (12.2-14.6)
  - INR 0.97 (0.89-1.11)
  - PTT 26.2s (25.8-34.2)

What's PB's Pre-Test Probability?

# Laboratory Diagnosis

#### SRA

- "gold standard"
- High specificity a positive result would support the diagnosis of HIT
- High cost (~\$150/test)

#### ELISA

- High sensitivity a negative test makes HIT highly unlikely
- Detects both clinically irrelevant (nonpathogenic) and clinically relevant antibodies
- Cost ~\$60/test

## Laboratory Diagnosis

#### HIPA

- High specificity (>90%) a positive result would support the diagnosis of HIT
- Positive test would include low background aggregation with no heparin, aggregation with the addition of a low concentration of heparin, and absent aggregation with high heparin concentrations.
  - SRA typically done here
    - Has to be sent away
    - Turn-around is 4-6 weeks
    - Diagnosis is based on clinical presentation and ruling out other causes of thrombocytopenia

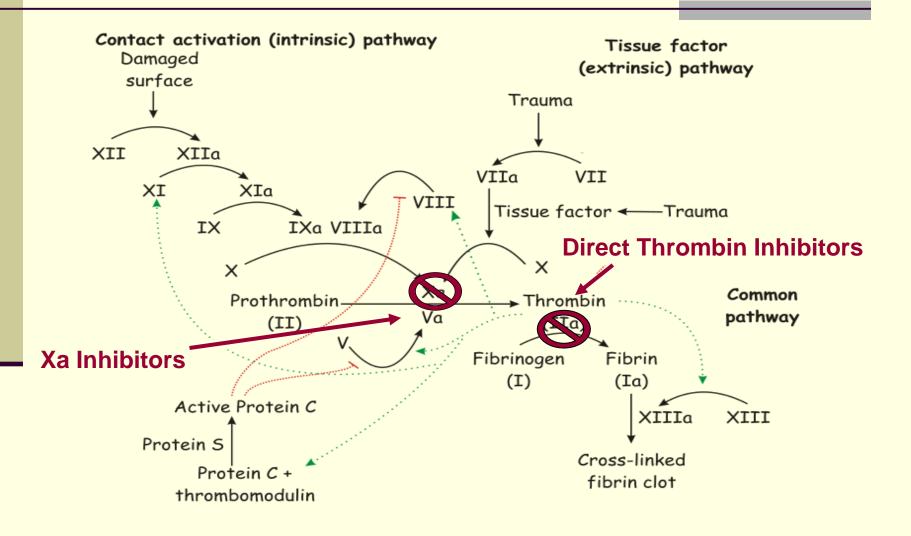
## Case Scenario (cont) - PB

PB is diagnosed with HIT

Blood sample drawn to be sent away for SRA testing...

Now what?

## Management of HIT


- Heparin from ALL sources should be discontinued
  - Heparin-coated catheters
  - Heparin flushes/locks
- Alternative non-heparin, anticoagulation therapy should be initiated immediately
  - Argatroban
  - Lepirudin
  - Bivalirudin
  - Danaparoid
  - Fondaparinux \_



Xa Inhibitors

Warkentin TE et al, Chest 2008; Coutre S, Up-To-Date 2010; Shantsila E et al., Chest 2009

## Alternative Anticoagulants



# Which agent is best for PB?

## 2008 ACCP Guidelines

#### Treatment of HIT

| Danaparoid -  | <br>Grade 1B |
|---------------|--------------|
| Argatroban —  | <br>Grade 1C |
| Lepirudin -   | <br>Grade 1C |
| Bivalirudin — | <br>Grade 2C |
| Fondaparinux  | <br>Grade 2C |

## Danaparoid (Orgaran<sup>®</sup>)

- Only agent that is currently on formulary
- Only option that has been evaluated in a prospective randomized controlled study
- Has the unique property of specific suppression of HIT antibody-induced platelet activation
- Potential for sc administration
  - IV still currently recommended for HIT
- No effect on INR
- BUT recent backorder issues

Chong BH et al. Thromb Haemost 2001; Warkentin TE et al., Chest 2008; Shantsila E et al., Chest 2009.

## Fondaparinux (Arixtra<sup>®</sup>)

- Limited data on use in HIT
- Dose for HIT not established
- Relatively low-cost compared to other agents
- 2008 Case Report of fondaparinux-induced thrombocytopenia in a patient previously treated with a LMWH
- Grade 2C in 2008 ACCP Guidelines

Shantsila E et al., Chest 2009; Warkentin TE et al, Chest 2008; Rota et al. Thromb Haemost 2008.

## Bivalirudin (Angiomax<sup>®</sup>)

- Indicated in patients undergoing PCI or cardiac surgery who have or are at risk of HIT
- No data in other HIT settings
- Some potential pharmacologic advantages
  - Short t<sup>1</sup>/<sub>2</sub>
  - Enzymatic metabolism
  - Low immunogenicity
  - Minimal effect on INR prolongation

#### Grade 2C in 2008 ACCP Guidelines

Shantsila E et al., Chest 2009; Warkentin TE et al, Chest 2008; Rota et al. Thromb Haemost 2008.

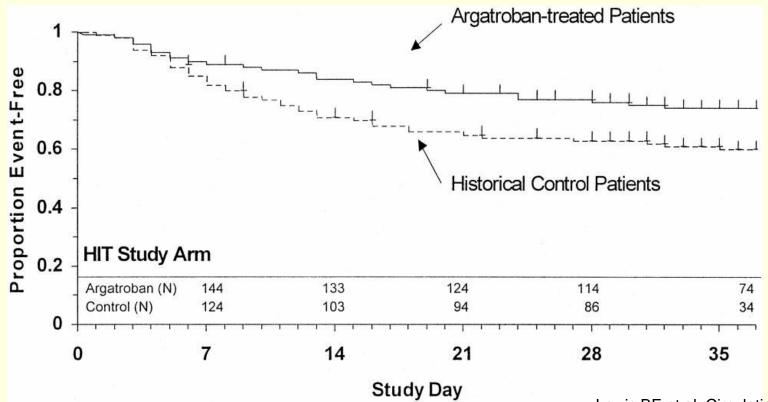
### Argatroban Review of Evidence

#### 2008 ACCP Guidelines

- Grade 1C recommendation
- Recommendation is based on two prospective trials ARG 911 and ARG 915

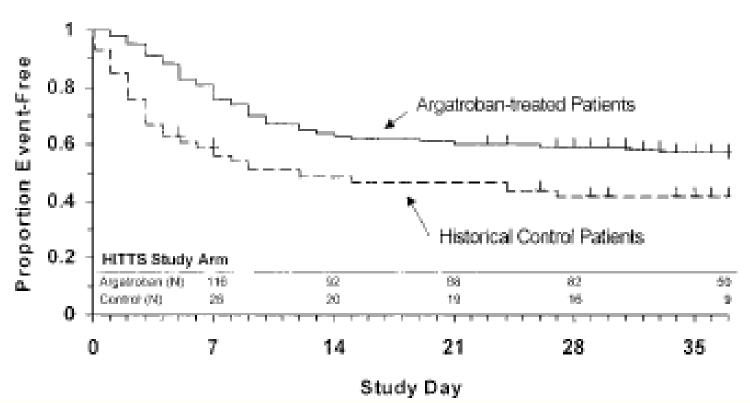
#### Prospective multicentre cohort study

- Historical controls
- Hospitalized patients with isolated HIT or HIT associated with thrombosis (2 study arms)
  - Isolated HIT
    - Argatroban n=160
    - Control n=147
  - HIT with thrombosis
    - Argatroban n=144
    - Control n=46


#### *Interventions*

- Argatroban 2.0 mcg/kg/min targeting an aPTT 1.5-3.0 X baseline
  - Average of 6 days
- Historical controls treated with local standard of practice – heparin discontinuation and/or oral anticoagulation

#### **Composite Endpoint**


- All cause mortality, all-cause amputation, and new thrombosis
- Isolated HIT: 25.6% vs. 38.8%, p=0.014
  OR=0.54 (95%CI 0.33-0.88)
- HIT with thrombosis (HITTS): 43.8% vs.
  56.5%, p=0.13
  OB-0.60 (05% CL 0.21, 1.17)
  - OR=0.60 (95% CI 0.31-1.17)

### *Time-to-event analysis* – *Isolated HIT* ■ HR 0.60 (95% CI 0.40-0.89)



Lewis BE et al. Circulation 2001.

### *Time-to-event analysis* –*HIT with thrombosis* ■ HR 0.57 (95% CI 0.36-0.90)



Lewis BE et al. Circulation 2001.

#### TABLE 2. Categorical Efficacy Analyses

|                            | HIT Arm            |                                     |         | HITTS Arm                           |                       |         |
|----------------------------|--------------------|-------------------------------------|---------|-------------------------------------|-----------------------|---------|
| Parameter                  | Control<br>(n=147) | Argatroban<br>(n=160)               | Р       | Control<br>(n=46)                   | Argatroban<br>(n=144) | Р       |
| Composite end point*       | 57 (38.8)          | 41 (25.6)                           | 0.014   | 26 (56.5)                           | 63 (43.8)             | 0.131   |
|                            | Odds ratio=        | Odds ratio=0.54 (95% Cl, 0.33-0.88) |         | Odds ratio=0.60 (95% Cl, 0.31-1.17) |                       |         |
| Components by severity†    |                    |                                     |         |                                     |                       |         |
| Death (all causes)         | 32 (21.8)          | 27 (16.9)                           | 0.311   | 13 (28.3)                           | 26 (18.1)             | 0.146   |
| Amputation (all causes)    | 3 (2.0)            | 3 (1.9)                             | 1.000   | 4 (8.7)                             | 16 (11.1)             | 0.787   |
| New thrombosis             | 22 (15.0)          | 11 (6.9)                            | 0.027   | 9 (19.6)                            | 21 (14.6)             | 0.486   |
| Death caused by thrombosis | 7 (4.8)            | 0 (0.0)                             | 0.005   | 7 (15.2)                            | 1 (0.7)               | < 0.001 |
| Any new thrombosis‡        | 33 (22.4)          | 13 (8.1)                            | < 0.001 | 16 (34.8)                           | 28 (19.4)             | 0.044   |

#### TABLE 5. Bleeding Incidence

|                        | НП                 | Arm                                    | HITT              | HITTS Arm                 |  |  |
|------------------------|--------------------|----------------------------------------|-------------------|---------------------------|--|--|
|                        | Control<br>(n=147) | Argatroban<br>(n=160)                  | Control<br>(n=46) | Argatroban<br>(n=144)     |  |  |
| Major bleeding,* n (%) | 12 (8.2)           | 5 (3.1)                                | 1 (2.2)           | 16 (11.1)                 |  |  |
|                        | P=                 | 0.078                                  | P=                | P=0.077                   |  |  |
|                        |                    | Odds ratio=0.36<br>(95% Cl, 0.12-1.05) |                   | atio = 5.56<br>0.72–50.0) |  |  |
| Minor bleeding,* n (%) | 60 (40.8)          | 64 (40.0)                              | 19 (41.3)         | 60 (41.7)                 |  |  |

\*Patients with >1 event are counted only once.

#### Most common adverse events:

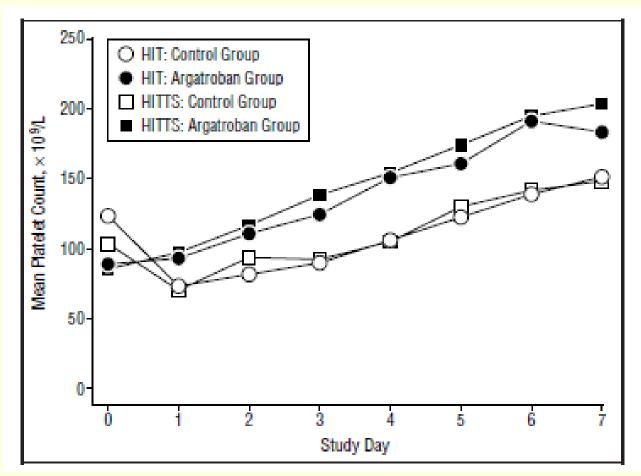
 Diarrhea, Pain, Rash, Hemorrhage, Purpura, Thrombophlebitis

#### Prospective multicentre cohort study

- Historical controls
- Hospitalized patients with isolated HIT or HIT associated with thrombosis (2 study arms)
  - Isolated HIT
    - Argatroban n=189
    - Control n=139
  - HIT with thrombosis
    - Argatroban n=229
    - Control n=46

#### Interventions

- Argatroban 2.0 mcg/kg/min targeting an aPTT 1.5-3.0 X baseline
  - Average of 5-7 days
- Historical controls treated with local standard of practice – heparin discontinuation and/or oral anticoagulation


#### **Composite Endpoint**

- All cause mortality, all-cause amputation, and new thrombosis
- Isolated HIT: 28% vs. 38.8%, p=0.04
  OR=0.61 (95%CI 0.39-0.98)
- HIT with thrombosis (HITTS): 41.5% vs. 56.5%, p=0.07
  OR=0.55 (95% CI 0.29-1.03)

Table 2. Efficacy Outcomes in 418 Argatroban-Treated Patients and 185 Historical Controls by Study Arm\*

|                          | Isolated HIT               |                               |         | HIT With Thrombosis       |                               |         |
|--------------------------|----------------------------|-------------------------------|---------|---------------------------|-------------------------------|---------|
| Outcome                  | Control Group<br>(n = 139) | Argatroban Group<br>(n = 189) | P Value | Control Group<br>(n = 46) | Argatroban Group<br>(n = 229) | P Value |
| Composite end point†     | 54 (38.8)                  | 53 (28.0)                     | .04     | 26 (56.5)                 | 95 (41.5)                     | .07     |
| Death (all causes)‡      | 29 (20.9)                  | 36 (19.0)                     | .78     | 13 (28.3)                 | 53 (23.1)                     | .45     |
| Death due to thrombosis  | 6 (4.3)                    | 1 (0.5)                       | .04     | 7 (15.2)                  | 6 (2.6)                       | .002    |
| Amputation (all causes)‡ | 4 (2.9)                    | 8 (4.2)                       | .57     | 5 (10.9)                  | 34 (14.8)                     | .64     |
| New thrombosis‡          | 32 (23.0)                  | 11 (5.8)                      | <.001   | 16 (34.8)                 | 30 (13.1)                     | <.001   |

More rapid recovery of platelet counts (p<0.01)</p>



Lewis BE et al. Arch Intern Med 2003.

Table 3. Major and Minor Bleeding Incidence in 418 Argatroban-Treated Patients and 185 Historical Controls by Study Arm\*

|                                  |                            | Isolated HIT                  |             | HIT With Thrombosis       |                               |             |
|----------------------------------|----------------------------|-------------------------------|-------------|---------------------------|-------------------------------|-------------|
| Outcome†                         | Control Group<br>(n = 139) | Argatroban Group<br>(n = 189) | P Value     | Control Group<br>(n = 46) | Argatroban Group<br>(n = 229) | P Value     |
| Major bleeding<br>Minor bleeding | 12 (8.6)<br>57 (41.0)      | 10 (5.3)<br>59 (31.2)         | .27‡<br>.08 | 1 (2.2)<br>19 (41.3)      | 14 (6.1)<br>87 (38.0)         | .48§<br>.74 |

# **Additional Studies**

#### Retrospective Analyses of ARG 911 & 915

- Argatroban-treated patients were less likely to experience stroke
  - Stroke rate: 2.6% vs. 5.2%
    - OR 0.31 (95% CI 0.10-0.96, p=0.041)
  - Stroke-associated mortality: 1% vs. 3.1%
    - OR 0.18 (95% CI 0.03-0.92, p=0.039)
- Thrombotic composite endpoint: death due to thrombosis, amputation secondary to thrombosis, new thrombosis
  - Isolated HIT: HR 0.27 (95% CI 0.15-0.49, p<0.001)</p>
  - HIT with thrombosis: HR 0.42 (95% CI 0.23-0.77, p=0.005)

### Argatroban Advantages

- Positive efficacy trials
- Has been studied in different patient populations
- No dose adjustment required in renal insufficiency
- Short t½ →quick reversal of anticoagulant effect with discontinuation of therapy
- Higher level of evidence compared to fondaparinux and bivalirudin

### Argatroban Disadvantages

- Converting patients to warfarin therapy
  - INR issues
  - ↑risk of venous limb ischemia and gangrene
- Must be dose adjusted in hepatic failure
  Prolonged t<sup>1</sup>/<sub>2</sub>
- May have to dose adjust in critically ill patients
- No antidote
- Short t½ → risk of rebound hypercoagulability and thrombosis

#### 2008 ACCP Guidelines

- Grade 1C recommendation
- Recommendation is based on three prospective trials: HAT-1, HAT-2 and HAT-3 and a post-marketing study: DMP

#### HAT-1, HAT-2 and HAT-3 Studies

Design: Prospective, multicenter, historically controlled trials

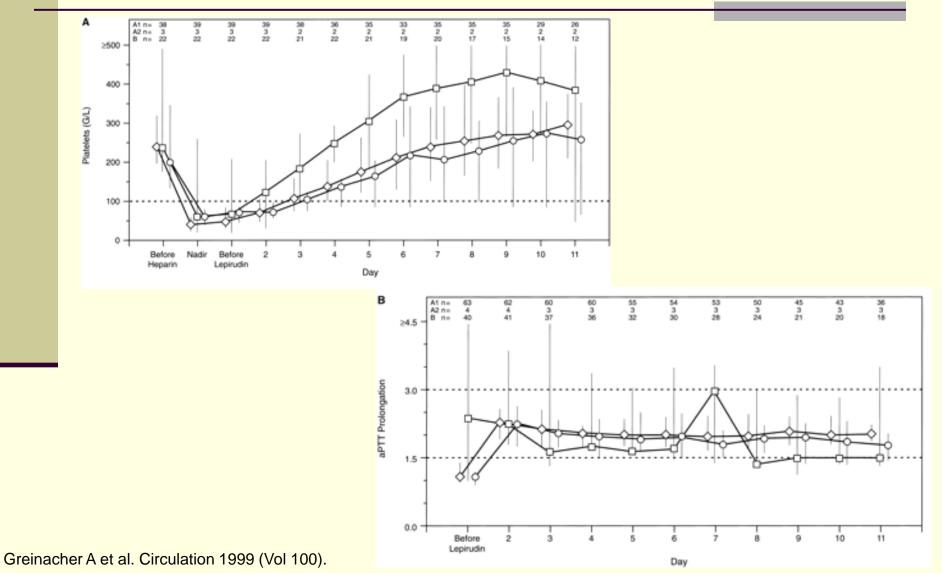
#### Treatment regimens

- A1. Known TEC: 0.4mg/kg bolus, then 0.15mg/kg/h infusion
- A2. Known TEC undergoing thrombolysis: 0.2mg/kg bolus, then 0.1mg/kg/h infusion
- B. No known TEC: 0.1mg/kg/h infusion

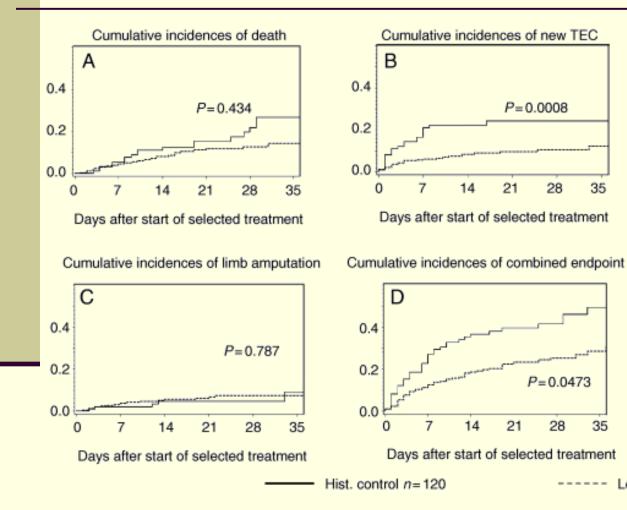
- C. For anticoagulation during CPB: 0.2mg/kg primer, 0.25mg/kg bolus, then infusion adjusted by ECT

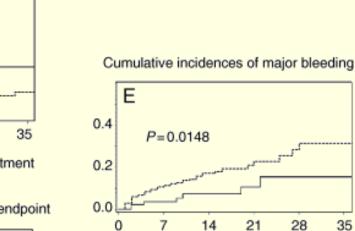
#### N = 403 patients

- HAT-1, n=82, HAT-2, n=116, HAT-3, n=205


### Outcomes

#### **Efficacy**


- aPTT prolongation and platelet count recovery
- Incidence of new arterial or venous TECs, limb amputations and death


#### <u>Safety</u>

- Incidence of major bleeding complications



|                    | Outcomes from diagnosis of HIT |                                 |         | Outcomes from start of treatment |                                |         |
|--------------------|--------------------------------|---------------------------------|---------|----------------------------------|--------------------------------|---------|
|                    | Total<br>n=403                 | Historical<br>Controls<br>n=120 | P-value | Total<br>n=403                   | Historical<br>control<br>n=120 | P-value |
| Death              | 47 (11.7)                      | 21 (17.5)                       | 0.095   | 47 (11.7)                        | 21 (17.5)                      | 0.095   |
| Limb<br>amputation | 26 (6.5)                       | 8 (6.7)                         | 0.933   | 22 (5.5)                         | 8 (6.7)                        | 0.618   |
| New TEC            | 56 (13.9)                      | 37 (30.8)                       | <0.0001 | 30 (7.4)                         | 30 (25.0)                      | <0.0001 |
| Combined           | 109 (27.0)                     | 53 (44.2)                       | 0.0001  | 82 (20.3)                        | 52 (43.3)                      | <0.0001 |
| Major<br>bleeding  | 71 (17.6)                      | 7 (5.8)                         | 0.0015  | 71 (17.6)                        | 7 (5.8)                        | 0.0015  |





35

Lepirudin n=339

Days after start of selected treatment

35

Lubenow J et al. Thromb Haemost 2005.

#### Drug Monitoring Program (DMP) Study

- 1325 patients
- 3 groups:
  - Treatment
  - Prophylaxis
  - Miscellaneous Indications

#### Evaluated same clinical endpoints as HAT studies

#### Drug Monitoring Program (DMP) Study

Lepirudin was started immediately following clinical diagnosis of HIT

|                 | Treatment | Prophylaxis |
|-----------------|-----------|-------------|
| Death           | 10.9%     | 12.3%       |
| Limb amputation | 5.8%      | 1.3%        |
| New TECs        | 5.2%      | 2.1%        |
| Combined        | 21.9%     | 15.7%       |

### Lepirudin Advantages

- Positive efficacy trials
- Has only a minimal effect on INR
- May be used in patients with abnormal hepatic function
- Higher level of evidence compared to fondaparinux and bivalirudin

### Lepirudin Disadvantages

Strict laboratory monitoring required (aPTT)

Dosage adjustment in renal impairment

Fatal anaphylactic reactions have been reported

Risk of bleeding

# Argatroban vs. Lepirudin

- Lepirudin trials required diagnostic confirmation of HIT, whereas argatroban trials did not
- Duration of therapy was longer in lepirudin trials than argatroban trials (12-14 days vs. 6-7 days)
  - Baseline platelet counts were lower in argatroban trials

### Summary Anticoagulants for treatment of HIT

|                    |                                                                                                                                  |                                                                                                                                                                                                                                              | P. 1. 1.                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables          | Argatroban                                                                                                                       | Lepirudin                                                                                                                                                                                                                                    | Bivalirudin                                                                                                                                                   | Danaparoid                                                                                                                                                                                              | Fondaparinux                                                                                                                                                                                                                              |
| Structure          | Synthetic, l-arginine<br>derivative                                                                                              | Recombinant form<br>of hirudin                                                                                                                                                                                                               | Synthetic peptide                                                                                                                                             | Mixture of glycosaminoglycans                                                                                                                                                                           | Synthetic<br>pentasaccharide                                                                                                                                                                                                              |
| Activity           | Direct thrombin<br>inhibitor                                                                                                     | Antithrombin                                                                                                                                                                                                                                 | Antithrombin                                                                                                                                                  | Anti-factor Xa                                                                                                                                                                                          | Anti-factor Xa                                                                                                                                                                                                                            |
| Elimination        | Hepatobiliary                                                                                                                    | Renal                                                                                                                                                                                                                                        | Enzymatic (80%), renal                                                                                                                                        | Renal                                                                                                                                                                                                   | Renal                                                                                                                                                                                                                                     |
| Half-life          | 40-50 min                                                                                                                        | 80 min                                                                                                                                                                                                                                       | 25 min                                                                                                                                                        | 18–24 h                                                                                                                                                                                                 | 17–20 h                                                                                                                                                                                                                                   |
| Monitoring         | aPTT, ACT                                                                                                                        | aPTT, ACT, ECT                                                                                                                                                                                                                               | aPTT, ACT, ECT                                                                                                                                                | Anti-Xa level                                                                                                                                                                                           | Anti-Xa level†                                                                                                                                                                                                                            |
| Dosing in<br>HIT   | Initial infusion rate,<br>2 µg/kg/min IV<br>(no initial bolus);<br>a reduced initial<br>infusion rate<br>(0.5–1.2 µg/kg/<br>min) | Bolus 0.2–0.4 mg/kg<br>IV (only in case of<br>life- or limb-<br>threatening<br>thrombosis);<br>maximum initial<br>infusion rate, 0.10<br>mg/kg/h IV<br>(target,<br>1.5–2.0 × patient's<br>baseline or mean<br>of laboratory<br>normal range) | Initial infusion rate,<br>0.15–0.20 mg/kg/h<br>IV (target,<br>1.5–2.5 × patient's<br>baseline or mean of<br>laboratory normal<br>range [no initial<br>bolus]) | Bolus: 2,250 units IV;<br>infusion, 400 units/<br>h × 4 h, then 300<br>units/h × 4 h, then<br>200 units/h IV,<br>subsequently<br>adjusted by anti-Xa<br>levels (target,<br>0.5–0.8 anti-Xa<br>units/mL) | Doses for HIT treatment<br>need to be established.<br>Because of limited<br>data available on the<br>drug in HIT,<br>fondaparinux could be<br>tried only when other<br>medicines in this table<br>are not available or<br>contraindicated |
| Dose<br>adjustment | Hepatic<br>insufficiency                                                                                                         | Renal dysfunction                                                                                                                                                                                                                            | Renal dysfunction                                                                                                                                             | Renal dysfunction,<br>body weight                                                                                                                                                                       | Renal dysfunction                                                                                                                                                                                                                         |

### Summary Anticoagulants for treatment of HIT

| Drug        | Approx. Daily Cost |  |  |
|-------------|--------------------|--|--|
| Danaparoid  | \$200              |  |  |
| Lepirudin   | \$500              |  |  |
| Argatroban  | \$665              |  |  |
| Bivalirudin | \$600              |  |  |

# Case Wrap Up

- PB was hospitalized and immediately initiated on lepirudin
  - 12 mg IV bolus
  - 6mg/hr via continuous IV infusion
  - Target = 1.5-2.0 X baseline aPTT
- Warfarin 5 mg daily was started once PB's platelets were 150X10<sup>9</sup> cells/L
  - Overlapped with lepirudin for 6 days
  - INR on Days 5 and 6 were 2.0-3.0
- Platelets on Day 5 were 280X10<sup>9</sup> cells/L

# Case Wrap Up



### Conclusion

- HIT is a potentially life-threatening condition that requires prompt diagnosis and treatment
  - According to the CHEST guidelines, danaparoid has the greatest recommendation grade due to availability of strong evidence
- No head to head trials comparing argatroban and lepirudin

- Arepally GM, Ortel TL. Heparin-Induced Thrombocytopenia. N Engl J Med 2006; 355(8): 809-17.
- Bartholomew JR, Pietrangeli CE, Jursting MJ. Argatroban anticoagulation for heparin-induced thrombocytopenia in elderly patients. Drugs Aging 2007;24(6):489-99.
- Beiderlinden M, Treschan TA, Gorlinger K, Peters J. Argatroban Anticoagulation in Critically III Patients. Ann Pharmacother 2007;41:749-54.
- Chong BH, Gallus AS, Cade JF, et al. Prospective randomised openlabel comparison of danaparoid with dextran 70 in the treatment of heparin-induced thrombocytopenia with thrombosis: a clinical outcome study. Thromb Haemost 2001;86:1170-75.
- Coutre S. Heparin-Induced Thrombocytopenia. In Up-To-Date. January 2010.
- Franchini M. Heparin-induced thrombocytopenia: an update. *Thrombosis Journal* 2005; 3: 14.

- Gajra A, Husain J, Smith A. Lepirudin in the management of heparininduced thrombocytopenia. *Drug Metab. Toxicol.* 2008; 4(8): 1131-41. Greinacher A, Volpel H, Janssens U, Hach-Wunderle V, Kemkes-Matthes B, Eichler P et al. Recombinant Hirudin (Lepirudin) Provides Safe and Effective Anticoagulation in Patients With Heparin-Induced Thrombocytopenia: A Prospective Study. *Circulation* 1999; 99: 73-80.
- Greinacher A, Janssens U, Berg G, Bock M, Kwasny H, Kemkes-Matthes B et al. Lepirudin (Recombinant Hirudin) fro Parenteral Anticoagulation in Patients With Heparin-Induced Thrombocytopenia. *Circulation* 1999; 100: 587-93.
- Jang IK, Hursting MJ, McCollum D. Argatroban therapy in patients with Coronary Artery Disease and heparin-induced thrombocytopenia. Cardiology 2008;109;172-176.
  - LaMonte MP, Brown PM, Hursting MJ. Stroke in patients with heparin-induced thrombocytopenia and the effect of argatroban therapy. Crit Care Med 2004 Apr;32(4):976-80.
- Lewis BE, Wallis DE, Berkowitz SD, Matthai WH, Fareed J, Walenga JM, et al.; for the Argatroban-911 Study Investigators. Argatroban anticoagulant therapy in patients with heparin-induced thrombocytopenia. Circulation 2001;103:1838-1843.

- Lewis BE, Wallis DE, Leya F, Hursting MJ, and Kelton JG; for the Argatroban-915 Investigators. Argatroban anticoagulation in patients with heparin-induced thrombocytopenia. Arch Intern Med 2003;163:1849-1856.
- Lewis BE, Wallis DE, Hursting MJ, Levine RL, Leya F. Effects of argatroban therapy, demographic variables, and platelet count on thrombotic risks in heparin-induced thrombocytopenia. Chest 2006 Jun;129(6):1407-16.
- Lip GYH, Chong BH. Heparin-Induced Thrombocytopenia: A Contemporary Approach to Diagnosis and Management. Chest 2009; 135:1651-64.
- Lubenow N, Eichler P, Lietz T, Greinacher A. Lepirudin in patients with heparin-induced thrombocytopenia – results of the third prospective study (HAT-3) and a combined analysis of HAT-1, HAT-2 and HAT-3. J Thromb Hemost 2005; 3: 2428-36.
  - Lubenow N, Eichler P, Lietz T, Farner B, Greinacher A. Lepirudin for prophylaxis of thrombosis in patients with acute isolated heparininduced thrombocytopenia: an analysis of 3 prospective studies. *Blood* 2004; 104(10): 3072-7.

- Lubenow N, Eichler P, Greinacher A. Results of a large drug monitoring program confirms the safety and efficacy of Refludan (lepirudin) in patients with immune-mediated heparin-induced thrombocytopenia (HIT) [abstract]. *Blood* 2002; 100: 502a.
- Pfizer Canada Inc. Argatroban Product Monograph. Pfizer Canada Inc: Kirkland, PQ. January 2009.
- Rota E, Bazzan M, Fantino G. Fondaparinux-related thrombocytopenia in a previous LMWH-induced heparin-induced thrombocytopenia (HIT). Thromb Haemost 2008;99:779-81
- Shantsila E, Lip GYH, Chong BH. Heparin-Induced Thrombocytopenia: A Contemporary Approach to Diagnosis and Management. Chest 2009; 135:1651-64.
- Warkentin TE, Greinacher A, Koster A, and Lincoff AM. Treatment and prevention of Heparin-Induced Thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Ediction). Chest 2008; 133:340S-380S.