Highly Effective Modulator Therapy in Cystic Fibrosis

2022 CSHP Ontario Branch Annul Conference

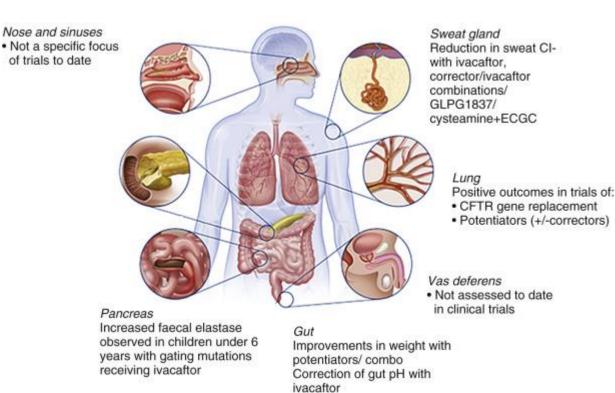
November 19, 2022

Kevin J. Curley BSc, BScPhm, MSc, RPh.

Presenter Disclosure

- I have the Relationships with commercial interests:
 - Speaker Fees: Vertex Pharmaceuticals Canada
- Speaking Fees for current program:
 - I have received no speaker's fee for this learning activity

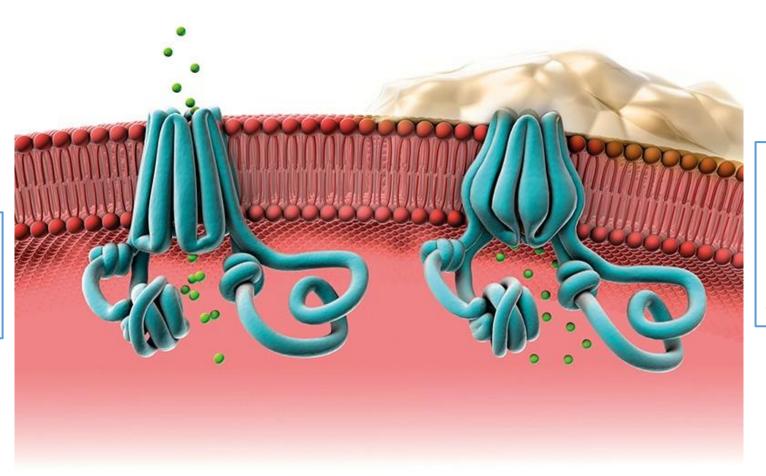
Commercial Support Disclosure


• This program has received no financial or in-kind support from any commercial or other organization

Learning Objectives

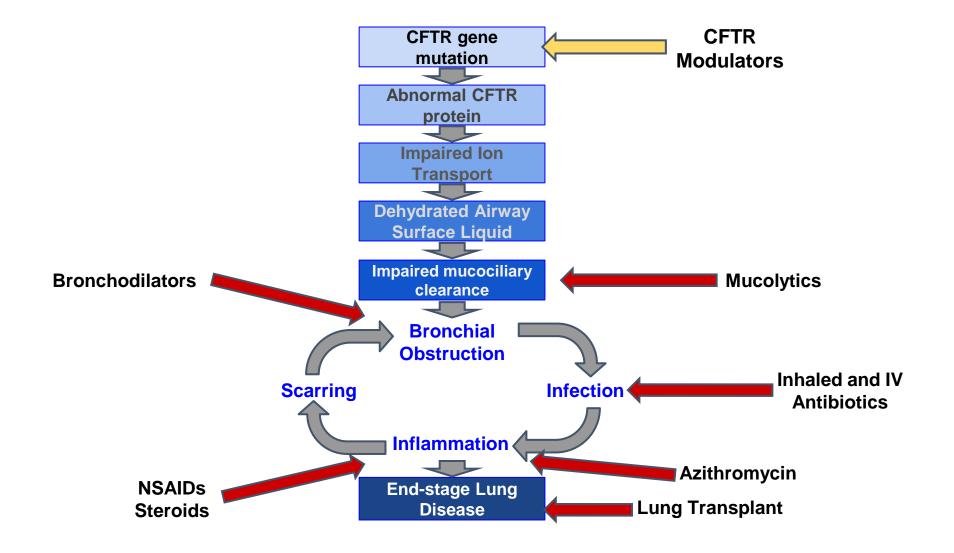
- By the end of this session participants should understand:
 - Molecular pathogenesis of Cystic Fibrosis
 - Mechanism of action of novel CFTR modulator drugs
 - Safety and efficacy of elexacaftor/tezacaftor/ivacaftor
 - Current accessibility of modulator drugs across Canada

Cystic Fibrosis


- Genetic disease resulting from mutation in cystic fibrosis transmembrane conductance regulator (CFTR) gene
- Multisystem disorder
 - Lung
 - Pancreas
 - Liver
 - Intestines
 - Reproductive organs
- Goals of therapy
 - Maintaining lung function
 - Maintaining growth and development

Davies, Kendig's Disorders of the Respiratory Tract in Children (2019)

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)


Normal CFTR Channel Chloride ions move across membrane to outside of cell

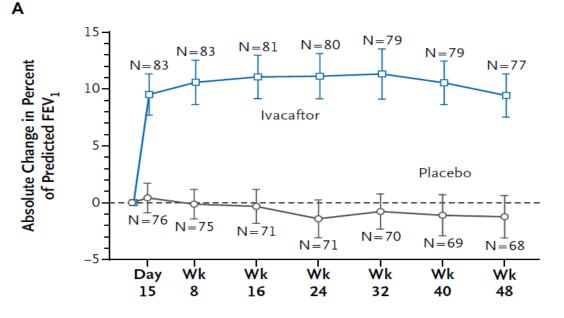
Mutant CFTR Channel Chloride ions do not move across membrane. Sticky mucus builds up outside of cell

Nature **583**, S17 (2020)

Treatment vs. Pathophysiology of CF Lung Disease

CFTR Modulators

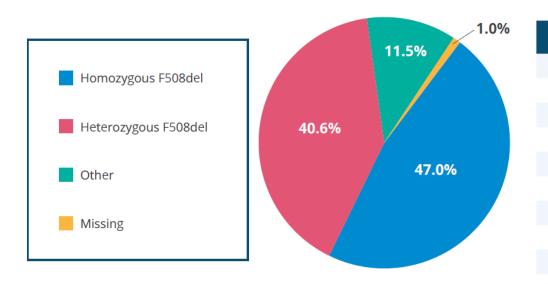
- Drugs that act directly on CFTR to correct defects in production and/or structure
- Small molecules
- New drugs or existing drugs discovered by high throughput screening
- Categories of CFTR Modulators:
 - Read-through
 - Correctors
 - Potentiators
 - Stabilizers
 - Amplifiers


CFTR Mutations

			CI-	Cr Cr Cr cr cr cr	CH CH CH CH	Cr Cr
wt-CFTR		1		IV	v	VI
Defect types	No protein	No traffic	No function	Less function	Less protein	Less stable
Mutation examples	G542X R553X W1282X	G85E ΔI507 ΔF508 N1303K	V520F S549R G551D	R117H R334W S1235R	A455E 1680-886A>G 2657+5G>A	r∆F508 Q1412X
		100 C	992-0 - 770	Restore	Maturation /	Promote

Lopes-Pacheco, Frontiers in Pharmacology (2016)

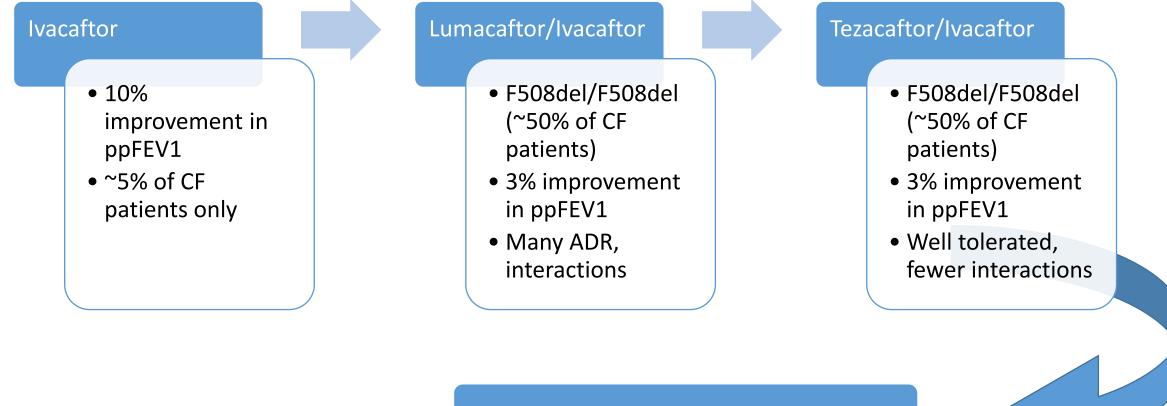
lvacaftor


- Potentiator Corrects gating defects in G551D (and others)
- Approved 2012 based on STRIVE, ENVISION
 - 10.6% increase in ppFEV1
 - 55% reduction in exacerbations
- Well tolerated, few drug interactions

Ramsay et al, NEJM (2011)

CFTR Genotypes

Genotype distribution of CF population (N = 4,332), 2020.

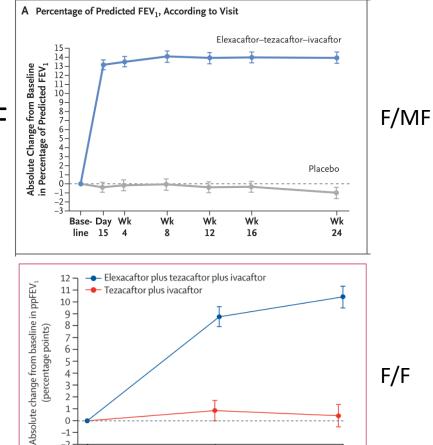


Frequency of the top 10 most common CFTR gene mutations on one or both alleles of cystic fibrosis individuals with recorded mutations (N = 4,290), 2020.

MUTATION	NUMBER	PERCENTAGE
F508del	3,791	88.4%
621+1G->T	259	6.0%
G542X	146	3.4%
G551D	136	3.2%
711+1G->T	118	2.8%
A455E	112	2.6%
L206W	110	2.6%
N1303K	91	2.1%
M1101K	69	1.6%
G85E	68	1.6%

The Canadian Cystic Fibrosis Registry 2020 Annual Data Report.

CFTR Modulator Development



Elexacaftor/Tezacaftor/Ivacaftor

Elexacaftor/Tezacaftor/Ivacaftor

- Triple combination
 - Corrector/Corrector/Potentiator
- Studied in F508del homozygous or F508del/MF
- Phase III trial results published Oct. 2019
 - 13.8% increase in FEV1 for F508del/MF
 - 10.0% increase in FEV1 for F508del/F508del
 - Versus tezacaftor/ivacaftor alone
 - 63% reduction in pulmonary exacerbations
- Approved in Canada 2021
 - For patients with one copy F508del (~90% of CF population)

MF = Minimal Function

Middleton et al., NEJM (2019) Heijerman et al., Lancet (2019)

Day 15

Visit

Week 4

3

-1 -2 Baseline

Elexacaftor/Tezacaftor/Ivacaftor Side Effects

Side Effect	E/T/I	Placebo	Side Effect	E/T/I	Placebo
Headache	17%	15%	CPK increase	9%	4%
URTI	16%	12%	AST increase	9%	2%
Abdo Pain	14%	9%	Rhinorrhea	8%	3%
Diarrhea	13%	7%	Influenza	7%	1%
Rash	10%	5%	Sinusitis	5%	4%
ALT increase	10%	3%	Increased bilirubin	5%	1%
Nasal congestion	9%	7%			

- Post-marketing
 - Joint, muscle pain
 - Cognitive, psychiatric effects

Administration and Clinical Pearls

- Two tablets AM (elexacaftor/tezacaftor/ivacaftor), one tablet PM (ivacaftor)
- Medication must be taken with food
 - 10-15g fat minimum
- CYP450 and Pgp substrate
 - Interactions with azole antifungals, anti-seizure meds
- Close monitoring of liver function in first year
- Counsel on fertility, birth control
- Discuss discontinuation, plan for other chronic CF meds

Elexacaftor/Tezacaftor/Ivacaftor Coverage

- List price ~\$300,000 per year
- Currently covered by all provincial public drug plans for patients over 6 years of age with one copy F508del
- Many private drug plans covering
- Clear demonstration of benefit required for renewal baseline and follow-up monitoring required
 - Lung function
 - BMI
 - Exacerbations
 - CFQ-R

References

- Davies, G et al.. (2019). Molecular Therapies for Cystic Fibrosis. In R. W. Wilmott et al. (Ed) *Kendig's Disorders of the Respiratory Tract in Children* (Ninth Edition, pp 800-811). Elsevier.
- Plackett, B. (2020). How much protein function needs to be restored? Nature, 583(7818) doi:https://doi.org/10.1038/d41586-020-02114-w
- Lopes-Pacheco M (2016) CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front. Pharmacol. 7:275. doi: 10.3389/fphar.2016.00275
- Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. *N. Engl. J. Med.* **365**, 1663–1672 (2011)
- Cystic Fibrosis Canada. (2022). The Canadian Cystic Fibrosis Registry 2020 Annual Data Report. Toronto, Canada: Cystic Fibrosis Canada.
- Middleton, P. G. et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. *N. Engl. J. Med.* **381**(19):1809–1819. (2019)
- Heijerman, H. G. M. et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. *Lancet*. **394**(10212):1940–1948. (2019)